Understanding machine learning models’ behavior, predictions, and interpretation is essential for ensuring fairness and transparency in artificial intelligence (AI) applications. Many Python modules offer methods and tools for interpreting models. Here are five to examine:
A Python library is a collection of pre-written code, functions and modules that extend the capabilities of Python programming. Libraries are designed to provide specific functionalities, making it easier for developers to perform various tasks without writing all the code from scratch.
One of Python’s advantages is the wide variety of libraries it provides, which may be used to address multiple application areas. These libraries address various topics, including scientific computing, web development, graphical user interfaces (GUI), data manipulation and machine learning.
Developers must import a Python library into their Python code in order to use it. They can use pre-existing solutions and avoid reinventing the wheel by utilizing the functions and classes provided in the library once they have been imported.
Related: History of Python programming language
For instance, the Pandas library is used for data manipulation and analysis, whereas the well-known NumPy library offers functions for numerical computations and array operations. Similarly, the Scikit-Learn and TensorFlow libraries are employed for machine learning jobs, and Django is a well-liked Python web development framework.
Cooperative game theory is used by the well-known Python module Shapley Additive Explanations (SHAP) to interpret the results of machine learning models. By allocating contributions from each input feature to the final result, it offers a consistent framework for feature
Read more on cointelegraph.com