The Astrophysical Journal Letters. International collaborations using telescopes in Europe, India (uGMRT, the country’s largest telescope, is operated by the Pune-based National Centre for Radio Astrophysics) Australia and China independently reported similar results.
But what are gravitational waves and why study them? To study the universe, scientists have typically relied on electromagnetic (EM) radiation (visible light, X-rays, radio waves, microwaves, etc.) while some have also used subatomic particles called neutrinos. But EM astronomers find it very tough to detect things like colliding black holes because EM radiation can be absorbed, reflected, refracted, or even bent by gravity.
Gravitational waves, which interact very weakly with matter, do not face these problems and hence do not distort information as they travel through space. They were predicted by Albert Einstein in 1915 in his General Theory of Relativity that describes space and time as a fabric, which will sense ‘ripples’ if any object dents it.
In 1993, two astronomers—Russell Hulse and Joseph Taylor—received the Nobel Prize in Physics “for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation". On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO), supported by the National Science Foundation and operated jointly by Caltech and the Massachusetts Institute of Technology (MIT), reported the first detection of gravitational waves generated by two colliding black holes 1.3 billion light years away.
Read more on livemint.com